Chapter 4

IT Infrastructure: Hardware and Software
STUDENT LEARNING OBJECTIVES

• What are the components of IT infrastructure?
• What are the major computer hardware, data storage, input, and output technologies used in business?
• What are the major types of computer software used in business?
STUDENT LEARNING OBJECTIVES (Continued)

- What are the most important contemporary hardware and software trends?
- What are the principal issues in managing hardware and software technology?
• **Problem:** Large, complicated infrastructure was difficult to manage, storage needs increased quickly.

• **Solutions:** Use IBM storage technology to reduce infrastructure spending and conserve space.
University of Pittsburgh Medical Center’s Technology Cure

• IBM System p5 595 servers and VMware helped UPMC increase server utilization rates and decrease storage space.

• Demonstrates IT’s role in standardizing technology and managing infrastructure.

• Illustrates digital technology’s role cutting costs and increasing resource utilization rates.
University of Pittsburgh Medical Center’s Technology Cure

- Develop technology strategy
- Develop technology standards
- Revise staffing and processes to support new IT infrastructure
- Deploy IBM servers
- Deploy IBM Unix operating system
- Deploy VM virtualization technology

- Complex IT infrastructure
- Technology-intensive processes
- Escalating hardware & storage needs

- Business Challenges

- Information System

- People

- Organization

- Technology

- Consolidate servers
- Consolidate storage
- Standardize technology
- Decrease costs
- Simplify management
- Increase technology asset utilization

Business Solutions
Infrastructure Components

- **IT infrastructure**: Provides platform for supporting all information systems in the business
 - Computer hardware
 - Computer software
 - Data management technology
 - Organizes, manages, and processes business data concerned with inventory, customers, and vendors
 - Networking and telecommunications technology
 - Technology services
 - E.g. consultants for systems integration with legacy systems
IT Infrastructure: Computer Hardware

IT Infrastructure Components

Figure 4-1
A firm's IT infrastructure is composed of hardware, software, data management technology, networking technology, and technology services.
Types of Computers

- Computers come in different sizes with varying capabilities for processing information
 - FLOPS (Floating point operations per second)
- PDAs, handheld mobile devices
- PCs
- Workstation
 - More powerful mathematical and graphics-processing capabilities than a PC
Types of Computers

- **Servers**
 - Type of midrange computer
 - Support computer network, sharing files and resources
 - Provide hardware platform for e-commerce

- **Mainframes**
 - Large-capacity, high-performance computer that can process large amounts of data very rapidly
 - E.g. used by airlines for thousands of reservations per second
Types of Computers

- **Supercomputer**
 - More sophisticated computer used for tasks requiring extremely rapid and complex calculations with thousands of variables, millions of measurements
 - Used in engineering, scientific simulations, military/weapons research, weather forecasting

- **Grid computing**
 - Power of geographically remote computers connected into single network to act as “virtual supercomputer”
Types of Computers

- **Client/server computing**
 - Form of distributed computing
 - Splits processing between "clients" and "servers"
 - **Clients**: User point of entry
 - **Servers**: Store and process shared data and perform network management activities
Types of Computers

- **Client/server computing (cont.)**
 - **Two-tiered client/server architecture**
 - Uses two types of machines
 - **Multitiered client/server architecture (N-tier)**
 - Balances load of network over several levels of servers
 - E.g. Web servers and application servers
In client/server computing, computer processing is split between client machines and server machines linked by a network. Users interface with the client machines.

Figure 4-2
In a multitiered client/server network, client requests for service are handled by different levels of servers.

Figure 4-3
Storage, Input, and Output Technology

- Primary secondary storage technologies
 - Magnetic disk:
 - Hard drives, USB flash drives
 - RAID: Can package hundreds of drives for large storage requirements
 - Optical disks
 - CD-ROM, CD-RW, DVD
 - Magnetic tape
 - Storage networking: SANs
 - Connect multiple storage devices on a separate high-speed network dedicated to storage
A Storage Area Network (SAN)

Figure 4-4
A typical SAN consists of a server, storage devices, and networking devices, and is used strictly for storage. The SAN stores data on many different types of storage devices, providing data to the enterprise. The SAN supports communication between any server and the storage unit as well as between different storage devices in the network.
Storage, Input, and Output Technology

• **Input devices:**
 • Gather data and convert them into electronic form
 • Keyboard
 • Computer mouse
 • Touch screen
 • Optical character recognition
 • Magnetic ink character recognition
 • Pen-based input
 • Digital scanner
 • Audio input
 • Sensors
Storage, Input, and Output Technology

• Output devices:
 • Display data after they have been processed
 • Monitor
 • Printer
 • Audio output

• Information systems collect and process information in one of two ways
 • Batch processing: Transactions stored for predefined amount of time, then processed as group
 • Online processing: Transactions processed immediately
Contemporary Hardware Trends

• Integration of computing and telecommunications platforms
 • Cell phones merging with handhelds
 • Growth of Internet telephony

• Nanotechnology
 • Creating computer chips and other devices thousands of times smaller through manipulating individual atoms, molecules
Examples of Nanotubes

Figure 4-5
Nanotubes are tiny tubes about 10,000 times thinner than a human hair. They consist of rolled up sheets of carbon hexagons, have potential uses as minuscule wires or in ultrasmall electronic devices, and are very powerful conductors of electrical current.
Contemporary Hardware Trends

• **Edge computing**
 - Multitier, load-balancing scheme for Web-based applications
 - Significant parts of Web site content, logic, and processing performed by smaller, less expensive servers located nearby the user
 - Increases response time and resilience and lowers technology costs.

• **Autonomic computing**
 - Development of systems that can configure themselves, heal themselves; e.g. self-updating antivirus software
Edge computing involves the use of the Internet to balance the processing load of enterprise platforms across the client and edge computing platform.

Figure 4-6
Contemporary Hardware Trends

• Virtualization
 • Process of presenting a set of computing resources so they can be accessed in ways that are unrestricted by physical configuration or geographic location
 • Server virtualization: Running more than one operating system at the same time on single machine.
Contemporary Hardware Trends

• Multicore processors
 • Integrated circuit with two or more processors
 • Enhanced performance, reduced power consumption and more efficient simultaneous processing of multiple tasks
Interactive Session: Technology Computing Goes Green

• Read the Interactive Session and then discuss the following questions:
 • What business and social problems does data center power consumption cause?
 • What solutions are available for these problems? Which are the most environment-friendly?
 • What are the business benefits and costs of these solutions?
 • Should all firms move toward green computing? Why or why not?
Operating System Software

• The software that manages and controls the computer’s activities

• PC operating systems and graphical user interfaces
 • GUls
 • Windows XP, Windows Vista, and Windows Server 2003
 • UNIX
 • Linux
 • Open-source software
The relationship among the system software, application software, and users can be illustrated by a series of nested boxes. System software—consisting of operating systems, language translators, and utility programs—controls access to the hardware. Application software, including programming languages and “fourth-generation” languages, must work through the system software to operate. The user interacts primarily with the application software.

Figure 4-7
Application Software and Desktop Productivity Tools

• Application programming languages for business
 • COBOL
 • C, C++
 • Visual Basic: Visual programming language

• Fourth-generation languages
 • Software tools that enable end-users to develop software applications
 • Tend to be nonprocedural, may use natural languages
Categories of Fourth-Generation Languages

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC software tools</td>
<td>General-purpose software packages for PCs</td>
<td>WordPerfect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microsoft Access</td>
</tr>
<tr>
<td>Query language</td>
<td>Languages for retrieving data stored in databases or files</td>
<td>SQL</td>
</tr>
<tr>
<td>Report generator</td>
<td>Specialized tools for creating highly customized reports</td>
<td>Crystal Reports</td>
</tr>
<tr>
<td>Graphics language</td>
<td>Display data from databases in graphic format</td>
<td>SAS Graph</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systat</td>
</tr>
<tr>
<td>Application generator</td>
<td>Preprogrammed modules to generate entire applications</td>
<td>FOCUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microsoft FrontPage</td>
</tr>
<tr>
<td>Application software package</td>
<td>Software programs that eliminate need for custom, in-house software</td>
<td>Oracle PeopleSoft HCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mySAP ERP</td>
</tr>
<tr>
<td>Very high-level programming language</td>
<td>Generate program code with fewer instructions than conventional languages</td>
<td>APL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nomad2</td>
</tr>
</tbody>
</table>
Application Software and Desktop Productivity Tools

- Software packages and desktop productivity tools
 - Word processing software
 - Spreadsheet software
 - Data management software
 - Presentation graphics
 - Software suites
 - Web browsers
Spreadsheet Software

Figure 4-8
Spreadsheet software organizes data into columns and rows for analysis and manipulation. Contemporary spreadsheet software provides graphing abilities for a clear, visual representation of the data in the spreadsheets. This sample break-even analysis is represented as numbers in a spreadsheet as well as a line graph for easy interpretation.
Software for the Web: Java, AJAX, and HTML

- **Java**
 - Operating system-independent, processor-independent, object-oriented programming language

- **AJAX**
 - Allows a client and server to exchange data behind the scenes to avoid reloading a Web page after each change

- **Hypertext markup language (HTML)**
 - Page description language for specifying how elements are placed on a Web page and for creating links to other pages and objects
Interactive Session: Organizations
Will Google Take Over the Desktop?

• Read the Interactive Session and then discuss the following questions:
 • What are the benefits of using Google Apps? What kinds of businesses are most likely to benefit? What kinds are least likely to benefit?
 • What reasons might a business have to continue using Microsoft Office for desktop productivity?
 • Search the Web for an article titled *Microsoft Office Live Vs. Google Apps For Your Domain* by Preston Gralla from September 2006. Do you agree with the author’s conclusion?
Web Services

- Web services:
 - Software components that exchange information with each other using universal Web communication standards and languages
- XML (extensible markup language)
 - SOAP (simple object access protocol)
 - WSDL (web services description language)
 - UDDI (universal description, discovery, and integration)
- Service oriented architecture (SOA)
How Dollar Rent-a-Car Uses Web Services

Figure 4-9
Dollar Rent-A-Car uses Web services to provide a standard intermediate layer of software to “talk” to other companies’ information systems. Dollar Rent-A-Car can use this set of Web services to link to other companies’ information systems without having to build a separate link to each firm’s systems.
Software Trends

• Open Source Software
 • Ubuntu
• Cloud Computing
 • Google Apps, Windows Live
• Mashups
 • ChicagoCrime.org
• Widgets
 • Apple Dashboard
• **Capacity planning**
 • Process of predicting when hardware system becomes saturated
 • Ensuring firm has enough computing power for current and future needs
• **Factors include:**
 • Maximum number of users
 • Impact of current, future software
 • Performance measures
• **Scalability:** Ability of system to expand to serve large number of users without breaking down
Managing Hardware and Software Technology

- **Total Cost of Ownership (TCO) model**
 - Used to analyze direct and indirect costs to help determine the actual cost of owning a specific technology
 - **Direct costs:** Hardware, software purchase costs
 - **Indirect costs:** Ongoing administration costs, upgrades, maintenance, technical support, training, utility and real estate costs
 - **Hidden costs:** Support staff, downtime, additional network management
 - TCO can be reduced through increased centralization, standardization of hardware and software resources
Managing Hardware and Software Technology

- Using technology service providers
 - Outsourcing
 - Using external provider to:
 - Run networks
 - Host, manage Web site(s)
 - Develop software (offshore software outsourcing)
 - Manage IT infrastructures
 - Requires Service Level Agreements (SLAs)
• Using technology service providers
 • On-demand computing (utility computing)
 • Firms off-loading peak demand for computing power to remote, large-scale data processing centers
 • Software as a Service (SaaS)
 • Firms rent software functions from Web-based services, with users paying either on a subscription or per-transaction basis
Managing software localization for global business

- Local language interfaces
 - English not typically standard at middle, lower levels
 - Interfaces are complex: Menu bars, error messages, online forms, search results, etc.
- Differences in local cultures
- Differences in business processes
- All of these factors add to TCO of using technology service providers
This page from the Pearson Prentice Hall Web site for Laudon text books was translated into Chinese using AltaVista Babel Fish translation tools. Web sites and software interfaces for global systems may have to be translated into multiple languages to accommodate users in other parts of the world.